Functional Consequences of Cell Type-Restricted Expression of Laminin α5 in Mouse Placental Labyrinth and Kidney Glomerular Capillaries
نویسندگان
چکیده
The labyrinth is the highly vascularized part of the rodent placenta that allows efficient transfer of gases, nutrients, wastes, and other molecules between the maternal and embryonic circulations. These two blood compartments are separated by blastocyst-derived trophoblasts and endothelial cells with an intervening basement membrane that contains laminin and other typical basement membrane components. Previously we reported that the labyrinth of laminin α5 knockout (LMα5-/-) embryos exhibits reduced vascularization and detachment of endothelial cells from the basement membrane, which normally contains LMα5. As very little is known about the origin of this vascular basement membrane, we investigated the cellular requirements for LMα5 expression in the mouse placental labyrinth. By fluorescence-activated cell sorting and RT-PCR we confirmed that both endothelial cells and trophoblasts normally express LMα5. Using Cre-loxP technology and doxycycline-mediated gene expression, we generated genetically mosaic placentas in which either the trophoblasts or the endothelial cells, but not both, expressed LMα5. We found that the overall architecture of the labyrinth was normal as long as one of these two cell types expressed LMα5, even if it was transgene-derived human laminin α5. These results suggest that laminin trimers containing α5 that are synthesized and secreted by endothelium or by trophoblasts are capable of integrating into the basement membrane and promoting normal vascularization of the placenta. Additional studies showed that endothelium-expressed human LMα5 can support vascularization of the kidney glomerulus, consistent with previous studies using a tissue grafting approach.
منابع مشابه
Transgenic Expression of Human LAMA5 Suppresses Murine Lama5 mRNA and Laminin α5 Protein Deposition
Laminin α5 is required for kidney glomerular basement membrane (GBM) assembly, and mice with targeted deletions of the Lama5 gene fail to form glomeruli. As a tool to begin to understand factors regulating the expression of the LAMA5 gene, we generated transgenic mice carrying the human LAMA5 locus in a bacterial artificial chromosome. These mice deposited human laminin α5 protein into basement...
متن کاملLaminin and Type IV Collagen Isoform Substitutions Occur in Temporally and Spatially Distinct Patterns in Developing Kidney Glomerular Basement Membranes
Kidney glomerular basement membranes (GBMs) undergo laminin and type IV collagen isoform substitutions during glomerular development, which are believed to be required for maturation of the filtration barrier. Specifically, GBMs of earliest glomeruli contain laminin α1β1γ1 and collagen α1α2α1(IV), whereas mature glomeruli contain laminin α5β2γ1 and collagen α3α4α5(IV). Here, we used confocal mi...
متن کاملMesangial cells organize the glomerular capillaries by adhering to the G domain of laminin α5 in the glomerular basement membrane
In developing glomeruli, laminin alpha5 replaces laminin alpha1 in the glomerular basement membrane (GBM) at the capillary loop stage, a transition required for glomerulogenesis. To investigate domain-specific functions of laminin alpha5 during glomerulogenesis, we produced transgenic mice that express a chimeric laminin composed of laminin alpha5 domains VI through I fused to the human laminin...
متن کاملEvalauation of Laminin Expression during Mouse Lens Development
Introduction: Among the components of the extracellular matrix (ECM) and basement membrane (BM), laminitis heterotrimeric glycoprotein (laminin) and collagen type IV are the most important. In a previous study we have examined the role of collagen type IV in the developing lens capsule. The present study aims to determine the appearance and distribution of laminin in the BM and ECM of lenses ...
متن کاملMesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the glomerular basement membrane
Mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the glomerular basement membrane. n developing glomeruli, laminin ␣ 5 replaces laminin ␣ 1 in the glomerular basement membrane (GBM) at the capillary loop stage, a transition required for glomerulogenesis. To investigate domain-specific functions of laminin ␣ 5 during glomerulogenesis, we produc...
متن کامل